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Abstract

This paper explores the foundational concepts of machine learning (ML) and deep learning (DL), provid-
ing both a detailed understanding for both researchers and beginners aiming to develop a solid grasp of
when and how to use different models effectively. It delves into essential techniques for improving model
performance, including regularization and hyperparameter tuning and highlights core components of deep
learning such as activation functions, loss functions, and optimizers, while focusing on foundational meth-
ods that remain impactful today. CNNs, RNNs, and Transformers are briefly discussed, along with an in-
depth examination of model evaluation metrics and the full model life cycle. The papers aims to provide
a comprehensive guide for choosing, tuning, and improving ML and DL models across various applications.
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Introduction

Machine learning (ML) and deep learning (DL) have rapidly transformed from academic papers to real ap-
plications driving innovation across industries. From powering recommendation systems and personal as-
sistants to enabling breakthroughs in healthcare, ML and DL have proven their ability to solve complex
problems in ways traditional methods cannot. Despite the vast advancements in both fields, the founda-
tional concepts are valuable for building robust, efficient, and interpretable models.

The importance of understanding these foundations cannot be overstated. Whether you’re a beginner or
an experienced researcher, grasping the underlying mechanisms of ML and DL models is essential for choos-
ing the right model for a given task, optimising its performance, and ensuring it remains interpretable. In
an era where models are often seen as black boxes, this knowledge provides the clarity needed to trust and
refine AI systems.

The purpose of this paper is to equip readers with a comprehensive guide to the core principles of machine
learning and deep learning. Beyond just understanding the basics, this paper aims to provide the neces-
sary insights to choose, apply, and improve models across various scenarios. By building a solid founda-
tion, readers will be empowered to make informed decisions in developing and enhancing their models, ul-
timately driving better outcomes in their respective fields.
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1 Foundations of Machine Learning

Since machine learning uses data to actually learn, the most efficient way to use data is a matrix. Let’s
call our matrix X ∈ Rm×n (shown in Figure 1), where n is the number of data points, and m is the num-
ber of features. A feature is a property of the data point represented in a column. Each row of the data
matrix X is an example data point, x ∈ Rm. You can think of each row as a vector, and each entry of
the vector represents the value of the data point for a particular feature.

Figure 1: A matrix of house pricing data with some made-up numbers where the features are number
of rooms, house size, city, and price. Each row/vector represents a house or a data point while each
value in a row called entry.

In machine learning, we consider each data point (row) as an example that the model (the AI) learns from.
Let’s say I have a friend called Ahmed who wants to be a physician but instead of learning from textbooks
and medical school, he decided to learn from patients and see each patient as an example (he just observes
now). After observing a good number of patients, Ahmed now has some general rules of how to deal with
new patients, and this generalization thing is the core idea behind machine learning.

So, the machine learns by first getting some data points structured in a matrix. After that, you need to
manually extract useful features from the data then pass these data points into the model and finally you
will get the result (like explained in Figure 2). But the game has not ended yet, you may want to get higher
result by getting more data, try other features, or even try another model. I know that this is too much,
so what about focusing in this simple question: how to do machine learning? Well, there are three main
types of machine learning you need to know...
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Figure 2: Machines learn from examples by extracting useful features manually or automatically (like
in deep learning) then pass these features into a model to get the result.

1.1 ML Paradigms

There are three main paradigms in machine learning: supervised, unsupervised, and reinforcement learn-
ing. Supervised learning is the most common one in AI. In supervised learning, we are not only given a
matrix of data X, but each data point xi also has an associated label, yi that we want to predict. Inside
supervised learning, there are two categories; (1) regression where you predict a continuous variable like
predicting how much oxygen a COVID-19 patient needs up to four days in advance to help hospitals al-
locate resources for those in need (Sriram et al., 2021). And (2) classification where you assign objects
or data points to predefined categories or classes like detecting skin cancer in the early stages (Mahmoud
and Soliman, 2024).

Figure 3: Data from the iris dataset proposed by (Fisher, 1936). The x and y axes are two of the fea-
tures. The left figure shows the true labels for each of the data points, where red points belong to the
setosa class, pink are virginica, and green are versicolor. The right figure shows an assignment of each
point to a cluster, learned via k-means clustering (Sanchez, 2020).

In unsupervised learning, we no longer have labels Y . Instead, we pass the data points of the matrix X
into the model, hoping that the model can find the pattern in the data. Unsupervised learning techniques
give us the ability to explore the structure or the distribution of the data (Raschka, 2022). A well-known
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clustering algorithm is k-means clustering (MacQueen, 1967), which learns to assign each data point to
one of k clusters such that the distance between all points within the same cluster is minimized. Formally,
it partitions the n observations into k sets S = {S1, S2, . . . , Sk} to minimize the difference between points
and the mean of the points in the cluster:

arg min
s

k∑
i=1

∑
x∈Si

||x − µi||2

where µi is the mean of the points in cluster Si. Figure 3 (right) shows an example of k-means cluster-
ing applied to the iris data. In this example, with only two features and no access to the true labels, k-
means is not able to learn a partitioning of the data into clusters that matches the true labels.

Another subfield of unsupervised learning is dimensionality reduction. Most of the times, it is helpful
to work with fewer features (i.e dimensions) and still retaining the meaningful properties of the data, which
in turn requires less storage space (Raschka, 2022). Additionally, the learning algorithm can run much faster
and achieve better performance as we reduce the number of irrelevant features (or noise).

Not all ML problems fall into the supervised/unsupervised division. If you think about how we (as humans)
learn and the nature of learning, you will clearly see that you learn by interacting with your world (or en-
vironment). At the same time, you are acutely aware of how your world responds to what you do, and your
goal is to get the best results through your actions. The same thing happens with our little agent; the agent
learns from the world/environment by interacting with it, through trial and error, and receiving rewards;
negative or positive as feedback for performing actions. The agent is not told which actions to take at first,
but the agent uses the feedback from the environment to discover which actions yield the most reward.

Figure 4: Reinforcement learning process starts with the agent observing the state of the environment
and take action according to the agent’s policy then receives a reward negative or positive from the
environment and move to the next state after that the process repeats. Based on a similar figure in
(Sutton and Barto, 2018).

Reinforcement learning differs from supervised learning; supervised learning is learning from a training set
of labelled examples provided by a knowledgeable external supervisor giving the AI the solution and the
right action to take in a specific situation. The goal of supervised learning is to generalize a rule for the
AI to deal with other situations that are not in the training set. But in real-world interactive problems,
the answer often emerges through exploration and trial and error. There might not be a definitive “cor-
rect” answer for every situation the agent encounters. Even if there is a right answer for some situations,
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it will not work well as a general solution (Sutton and Barto, 2018).

Reinforcement learning is also different from unsupervised learning; unsupervised learning is finding struc-
ture hidden in the collection of unlabelled data. Understanding the hidden structure can be useful in re-
inforcement learning, but unsupervised learning itself does not maximize the reward signal.

So, reinforcement learning is the third machine learning paradigm alongside supervised learning and un-
supervised learning with a goal to maximize the total rewards that the agent gets from the environment.

1.2 Generalization

One of the big challenges in machine learning is to improve generalization, which is the ability to put gen-
eral rules from seen data to deal with new, unseen data. Basically, we split our data into three subsets:
the training, validation, and test sets. Knowing the difference between the training error and the valida-
tion error can help us identify two common phenomena: underfitting and overfitting. Underfitting occurs
when a model cannot learn from the training data. When the model is able to perfectly predict the train-
ing data, it might begin to overfit the data, i.e. the model knows more than enough so it fails to gener-
alize.

Figure 5: A classification task where the model must separate class 1 (green X’s) from class 2 (cir-
cles). Three decision boundaries are shown in red. Underfitting occurs when the model capacity is not
sufficient to accurately partition the data (a). Here, a linear decision boundary is too simple for the
curved distribution of the class labels. However, if the model capacity is too great, it may overfit the
data, perfectly capturing the idiosyncrasies of the training data at the expense of generalization error
(c) (Nautiyal, 2017).

Another idea that is related to overfitting and underfitting is bias-variance tradeoff. Firstly, bias error
happens when the learning algorithm makes incorrect assumptions; e.g. assuming the data is linearly sep-
arable when it is curved which leads to underfitting and therefore high error. Secondly, variance says how
much your results will change if you train the model on a slightly different dataset.

The bias-variance tradeoff is an important idea that relates to overfitting and underfitting. Bias error
is a result of incorrect assumptions made by the learning algorithm; for example, assuming the true de-
cision boundary is linear when it is actually curved. High bias can lead to underfitting and therefore high
training or approximation error. Variance (V ar(ŵ)) describes how much the solution found by the learn-
ing algorithm is sensitive to small fluctuations in the training data. If the model has a high variance, we
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expect that the solution may change significantly if we re-sample a new dataset. High variance can lead
to overfitting, where the model learns the quirks and noise in the training data too well, but fails to gen-
eralize well to unseen data. There are ways to deal with overfitting; like regularization or maybe increas-
ing the training size in some cases, but I’ll introduce these techniques in section 2.2.

1.3 Choosing the right model

Choosing the right machine learning model depends on various factors like the type of data, the problem
you’re solving, and the balance between accuracy, interpretability, and resource needs. It’s not just about
picking the most advanced model but selecting the one that fits your specific context.

First, look at your data. If you have a small dataset, simpler models like linear regression or decision trees
are often better as they don’t overfit easily. With larger datasets, complex models like random forests or
deep learning can uncover deeper patterns. The type of features you have also matters—categorical data
may suit decision trees, while continuous data can benefit from linear regression or support vector machines.
In high-dimensional settings, where you have more features than data points, techniques like regulariza-
tion or dimensionality reduction help manage complexity before applying models like neural networks.

The nature of the problem—whether it’s classification, regression, or clustering—will guide your model
choice too. For classification tasks like detecting spam, models like logistic regression or decision trees are
common. If you’re tackling something more intricate, like image recognition, convolutional neural networks
(CNNs) can handle spatial data better. In regression, when predicting continuous values, linear models
work well for straightforward tasks, but for non-linear ones, models like random forests or support vector
regression excel. When you need to group data points (as in customer segmentation), clustering meth-
ods like k-means or DBSCAN are useful, depending on whether you need to handle noise or predefined clus-
ters.

Finally, there’s a trade-off between interpretability and performance. Simpler models like logistic regres-
sion are easy to understand but might not capture complex relationships in the data. On the other hand,
high-performing models like deep learning offer more accuracy but are harder to interpret. Computational
resources are another key factor—if you’re working with limited resources, simpler models are often more
practical. However, when you have the power to train more complex models, they can yield higher per-
formance, though at the cost of increased computational time and complexity.
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2 Deep Learning

Deep learning drives many applications and services, including digital assistants, voice-enabled TV remotes,
credit card fraud detection, self-driving cars, and generative AI. Unlike traditional machine learning, deep
learning can handle unstructured data, such as text and images, without extensive preprocessing, also deep
learning algorithms automate feature extraction, which reduces dependency on human expertise. As shown
in Figure 6, the core of deep learning is a neural network that is made up of layers (input, hidden, and out-
put) that contain nodes. Each node computes its output based on a set of weights (or parameters) ap-
plied to the output of the previous layer.

Figure 6: A simple neural network with two hidden layers (in red), and a one-dimensional output layer
(designed with NN-SVG. https://alexlenail.me/NN-SVG).

The layer in Figure 6 is the input layer which applies the inputs from data x. To compute the output of
all the nodes within a layer (say the first hidden), we use matrix multiplication: h(1) = σ(W (1)x), where
W (1) is the matrix of weights (or parameters) for the first hidden layer, while σ is the activation function.

2.1 Activation Functions

An activation function is a fancy way of saying that we are making the output of each neuron non lin-
ear because we want to learn non-linear relationships between the input and the output. Without a non-
linear activation function, even the deepest network is as good as a single one. There are 3 types of ac-
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tivation functions: binary step function, linear function, and — the most important one — non-linear func-
tions.

Binary step function depends on a threshold value that decides whether a neuron should be activated
or not. Basically, we compare the inputs with a certain threshold; if the input is greater than it, then the
neuron is activated, else it is deactivated, meaning that its output is not passed on to the next hidden layer.
Linear activation function is another type of activation functions where the activation is proportional
to the input. The function doesn’t do anything to the weighted sum of the input, it simply outputs the
value it was given.

Figure 7: (a) Binary step activation function when the inputs is greater than or equal to zero, it is
activated, else it is deactivated. (b) simple linear activation function follow the equation x = y at any
point in real numbers.

2.2 Loss

If you think for a moment, you will find out that step functions and linear functions are difficult to opti-
mize and can not solve a lot of problems. Therefore, non-linear activation functions come as a mag-
ical way to solve any complex problem, especially the non-linear ones. Common activation functions are
logistic sigmoid, Tanh, and rectified linear unit (ReLU). You can see in Figure 2.3 that logistic sigmoid
outputs a value between 0 and 1, but suffers from vanishing gradients during training. While Tanh is sim-
ilar to sigmoid but outputs values between -1 and 1. A more frequently used activation function is ReLU
(Rectified Linear Unit) which is simple and efficient, outputs the input directly if positive, otherwise out-
puts zero. There are variants of ReLU; like Leaky ReLU that address the “dying ReLU” problem (Xu et al.,
2015).

Let’s go back to supervised learning to understand some important concepts, such as loss and optimiza-
tion. As a reminder, in supervised learning, we want to predict the label y given a data point x. There-
fore, we make a prediction ŷ = f(x). But how can we learn useful information from our prediction? First,
we need to define our model and I’m going to use simple linear regression as an example:
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Figure 8: Non-linear activation function like logistic sigmoid, Tanh, and ReLU.

ŷ = wT x

Here, w is a vector containing the weights/parameters of the network and this weight is how much a fea-
ture i affects the outcome of the model (e.g. the size of the house may affect the price while the color of
the doors may not). So, to measure how good or bad our predictions are, we use a loss function. Com-
mon loss functions include Mean Squared Error (MSE) which squares the difference between predicted
and actual values. Also, we have Cross-Entropy Loss which is mostly used for classification problems and
measures the probability distribution difference between predictions and true labels. With our linear re-
gression model, I’m going to use the mean squared error loss function:

L̂(X, y) = 1/n
n∑

i=1
(ŷi − yi)2

We can now minimize this loss by finding the point at which the gradient of the loss with respect to the
weights (or parameters) w is zero (i.e., ∇wL̂ = 0). Thus, we can determine the optimal weight vector:
w = (XT X)−1XT yT (Goodfellow et al., 2016).

In section 1.2, I talked about overfitting and underfitting without presenting a way to fix the problem. Here
we’ll use regularization as a way to deal with bias-variance tradeoff and hopefully get a better model for
generalization. It achieves this by adding a penalty term to the loss function, discouraging the model from
assigning too much importance to individual features or coefficients. One of the common examples of reg-
ularization is weight decay, which introduces a penalty on the norm of the weights, e.g.:

J(w) = L̂(X, y; w) + λwT w

where the hyperparameter λ controls the strength of the penalty. I want you to know that all deep learn-
ing algorithms have hyperparameters that must be tuned by testing the model performance.
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2.3 Optimization

In any machine learning and deep learning model, we want to minimize the loss function by updating the
parameters iteratively during training. In traditional machine learning, we can easily optimize the loss and
reach the optimal point — the point with the least value of loss — but due to the number of parameters
in neural networks, finding the global minimum becomes difficult.

Figure 9: Red areas show regions of parameter space where the loss is high, blue areas show regions
where the loss is low. Convex loss functions (a) can be found in traditional machine learning models
and are easily to optimize, while neural network architectures can lead to complicated loss landscapes
(b). Reproduced by (Jaques, 2019) from (Li et al., 2017)

So, to find a good optimizer, we need a more complicated technique like gradient-based optimization
which finds the minimum by dividing the loss landscape into steps with size α or learning rate. A most
basic gradient algorithm is stochastic gradient descent (SGD) where at each step, SGD randomly sam-
ples a batch of training data (a smaller group of the dataset) and computes the gradient loss with respect
to the model parameters ∇wL̂(XB; w). The parameters are then updated by moving in the direction of
the steepest descent (opposite to the gradient).

The computational cost of SGD is linear in the size of the batch. Using a smaller batch requires less com-
putation and memory, but introduces more noise to the gradient updates (Dinh, 2018). Beyond SGD, tech-
niques like Adam (Kingma and Ba, 2017), RMSProp, and Adagrad help escape local minima and converge
faster by adaptively adjusting learning rates and computing a moving average of the gradient estimates
as a form of momentum (Nesterov, 2013, Sutskever et al., 2013).
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2.4 Model life cycle

Model building projects (shown in Figure 10) follow a well-established life cycle. The first step involves
creating a baseline model, a simple initial version that serves as a foundation for further development. Next,
you feed your data into the model, which trains it to learn the underlying patterns and relationships. This
training process is followed by rigorous testing to evaluate the model’s performance. During testing, you
can identify issues like overfitting, where the model memorizes the training data too closely and performs
poorly on unseen data, or underfitting, where the model fails to capture the complexities of the data and
has low accuracy. Based on the results of this evaluation, you can diagnose these issues and make adjust-
ments to improve the model’s performance. This might involve trying different algorithms, tweaking pa-
rameters, or gathering more data. You then train the improved model again and repeat the entire process
until it meets your desired level of accuracy and generalizability.

Figure 10: Model building follows a cycle: create a baseline model, train, test, diagnose the issues
like overfitting and underfitting, improve, train it again, and repeat this process until it meets your
performance goals.

How to diagnose what’s happening in your model? The first thing that you need to know is that it’s good
to have one main metric to evaluate your model, like the MSE that we used before. Other evaluation met-
rics like accuracy which is the proportion of correct predictions for a classification task. We also have Pre-
cision and Recall (shown in figure 2.6) are used to measure the ability of the model to identify true pos-
itives and avoid false positives/negatives (relevant for imbalanced datasets). Sometimes you want to free
your head and use F1-Score which is the harmonic mean of precision and recall.
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2.5 Architectures

Until now, we only talked about one type of neural networks which is a fully-connected network or feed-
forward neural network. In an image classification problem like MNIST (Lecun et al., 1998) where we have
only 28 by 28 pixels which means 784 neurons in the input layer, but what if we have a bigger image say
100 by 100 pixels, this will make our hidden layer contains 10 000 neurons and if we have one hidden layer
with 100 neurons, it will need one million parameters which is a huge number of parameters to train for
just an image. So, to be more flexible, we can use partially connected layers like in convolutional neural
networks (CNNs) (Lecun et al., 1998);(Fukushima, 1980). These networks contain learned filters that are
applied across all parts of the input, which is typically an image. In this way, the networks can learn func-
tions which are translation invariant. For example, the network can learn a filter to detect a cat, and be-
cause it will be applied across many positions in the input image, the network can detect cats in any part
of the image.

Figure 11: A brief illustration of a ventral stream of the visual cortex in the human vision system. It
consists of primary visual cortex (V1), visual areas (V2 and V4) and inferior temporal gyrus (Wang
and Raj, 2017).

Another type of architecture is recurrent neural networks (RNNs) which model sequential data, mean-
ing they have sequential memory. An RNN takes in different kinds of inputs (text, words, letters, parts
of an image, sounds, etc.) and returns different kinds of outputs (the next word/letter in the sequence,
paired with a fully-connected network it can return a classification, etc.). While this can give an RNN a
rudimentary form of memory, it also exacerbates problems with vanishing and exploding gradients. Be-
cause computing the gradient depends on multiplying by the same parameter values repeatedly, this can
cause the gradients to explode (if the parameter is greater than one) or vanish (if the parameter is less
than one). Long Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997) help to
address this problem by adding an input, output, and forget gate to each recurrent cell. These gates
allow the network to learn when to update the information in the cell and when to erase it, rather than
simply multiplying by the same parameters each time.
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Figure 12: A recurrent neural network with one hidden unit (left) and its unrolling version in time
(right). The unrolling version illustrates what happens in time: St−1, St, and St+1 are the same unit
with different states at different time steps. (LeCun et al., 2015)

Recently, transformers have emerged as an alternative to RNNs (Vaswani et al., 2017). These models
make use of an attention mechanism to summarize inputs of varying lengths based on dynamically chang-
ing, learned attention weights. Transformers have been shown to be highly effective at modelling sequences
of data, and consequently have led to impressive results in music generation (Huang et al., 2018) and text
generation (Radford et al., 2019).

Final Words

I tried to get you through the foundation of machine learning and deep learning, but there are many con-
cepts to learn and many applications to try. For this reason, you may like to take a look at the following
resources: (Ying, 2022) for an overview of traditional ML algorithms, (Raschka, 2022) for more details
and code examples, (Turp, 2023) for an overview of deep learning, (Sanderson, 2017) for visualizing the
deep learning concepts, and (Zhang et al., 2021) for more details and code examples.
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